PROCESS CONTROL

Course Code	19EE4701C	Year	IV	Semester	Ι
Course Category	Program Elective-IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Understand technical terms and concepts associated with process control domain					
CO2	Analyze the basic control actions used in process industries					
CO3	Develop, tune and implement PID Controllers to achieve desired performance for					
	various processes					
CO4	Develop & implement control schemes for various processes control applications					
CO5	Extend the performance of the complex systems with advanced control strategies					

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	2						2							
CO2			3			3								
CO3			3								3		3	
CO4			2				3		2					2
CO5					1			2				1.		1

SYLLABUS					
Unit	t Contents				
No.		CO			
I	Introduction to Process control: Terms and objectives, piping and Instrumentation diagram, instrument terms and symbols. Regulatory and servo control, classification of variables. Process characteristics: Process equation, degrees of freedom, modeling of simple system, Self-regulating processes, interacting and non- interacting processes, Process lag, load disturbance and their effect on processes	C01			
II	Controller modes: Basic control action, two position, multi-position, floating control modes. Continuous controller modes: proportional, integral, derivative. Composite controller modes: P-I, P-D, P-I-D, Integral wind-up and prevention. Auto/Manual transfer, Bump less transfer. Response of controllers for different test inputs. Selection of control modes for processes like level, pressure, temperature and flow.	CO2			

III	Final control elements: Pneumatic and electrical actuators, Valve positioners. Pneumatic and electrical dampers, Control valves types, construction details, various plug characteristics. Energy efficient valves - Valve sizing - selection of control valves. Inherent and installed valve characteristics. Fail-safe operation, Cavitations and flashing in control valves, Instrument air supply specifications.	CO3
IV	Controller tuning Methods: Evaluation criteria - IAE, ISE, ITAE. Process reaction curve method, continuous oscillation method, damped oscillation method. Auto tuning. Closed loop response of I & II order systems, with and without valve, measuring element dynamics.	CO4
V	Advanced control system: Cascade control, ratio control, feed forward control. Over-ride, split range and selective control. Multivariable process control, interaction of control loops. Introduction to Dynamic Matrix Control. Case Study, boiler drum level control.	CO5

Learning Resources

Text Books:

1. K.Krishna swamy, Process control, Anshan Publishers .2nd edition, june 2011.

- 2. Surekha Bhanot, Process control principles and applications, oxford university press, 2008.
- 3. D.R. Coughanowr, Steven E LeBlanc, Process Systems Analysis and Control, McGraw Hill, Singapore, 3rd Edition, 2009.
- 4. G.Stephanopoulos, Chemical Process Control-An Introduction to Theory and Practice Prentice Hall of India, New Delhi, 3rd Edition, 2008.

Reference Books:

- 1. B.W. Bequette, Process Control Modeling, Design and Simulation, Prentice Hall of India, New Delhi, 2004.
- 2. C.A.Smith and A.B Corripio., Principles and Practice of Automatic Process Control, John Wiley and Sons, New York, 3rd Edition 2005.
- 3. Paul W.Murril, Fundamentals of Process Control Theory, ISA press, New York, 3rd Edition, 2000.
- 4. Bela G. Liptak, Instrument Engineers' Handbook, Volume II: Process Control and Optimization, CRC Press, 4th Edition, 2005.

Learning Resources: https://nptel.ac.in/courses/103/105/103105064/